9. Вольтметр. Как изменить предел измерения. Как переделать из постоянного тока на переменный.
Переходим к работе над измерительными приборами. Здесь их будет задействовано достаточно много: тахометр, два прецизионных мультиметра с функцией True RMS, осциллограф, двухканальный тестер температуры, аналоговый вольтметр и аналоговый амперметр. Из всего перечисленного у нас в полноценном виде нет только двух последних. Поэтому будем их изготавливать самостоятельно.
Аналоговые приборы включены в состав стенда чтобы отслеживать динамику изменения напряжения и тока нагрузки в реальном времени. При работе цифровые мультиметры, в рамках некоторых процессоров, тратят значительное время на преобразование сигнала и его последующий вывод. Получается, что пока выполняются математические вычисления и отображение информации, значение тока или напряжения может существенно измениться, вернуться к ранее выведенному значению и данный факт замечен не будет. После того как будет завершена работа по созданию стенда, в качестве наглядного примера подобной ситуации, можно будет привести измерения параметров цепи при работе указателей поворотов.
Приступаем к изготовлению. Аналоговые приборы будем делать из промышленных измерительных головок, которые устанавливают в распределительные щиты. У нас есть вольтметр, который рассчитан на работу с напряжением до 250 вольт и амперметр с рабочим током до 150 амперметр. Амперметр конечно использовался с шунтирующем резистором. Для того, чтобы нам использовать эти приборы, их потребуется переделать. В цепях, в которые планируется включить амперметр и вольтметр, течёт переменный ток, а приборы рассчитаны на работу с постоянным. Таким образом нам придётся изменить не только предел измерения, но и адаптировать их для работы с переменным током.
Особых проблем с изменением рабочих диапазонов и типом тока мы не видим. Сами точные значения аналоговых приборов пока нам не требуются, поэтому новая шкала в процессе изготовления будет упрощена.
Работу начинаем с создания корпусов. Их мы сделаем из обрезков десятимиллиметровой фанеры. Процесс до безобразия прост, поэтому акцент на нём ставить не будем. Чтобы оценить масштабы переделки мы начали разбирать вольтметр.
Параллельно с переделкой приборов, сразу выполним покрасочные работы. После того как покрытие высохнет, в корпуса установим блоки клемм и приклеим ножки.
Продолжаем работу над вольтметром. Для полного понимания того, что потребуется сделать с измерительным прибором, снимаем пластину на которой находится его шкала.
Внутри корпуса расположены две катушки, измерительная головка и две клеммы которые вмонтированы в основание.
На этапе модернизации устройства стоит более подробно остановиться на принципиальных схемах.
Первой мы рассмотрим схему, которая позволит нам поменять предел измерения напряжения. Если погрузиться в схемотехнику, то мы обнаружим, что измерительная головка — это миллиамперметр. На базе его строятся абсолютно все стрелочные измерительные приборы и индикаторы. В зависимости от того какие радиокомпоненты окружают миллиамперметр и как впоследствии всё это включено в схему, и будет определять назначение измерительного прибора, станет ли он амперметром или вольтметром.
В магнитоэлектрических вольтметрах измеряемое напряжение Uизм. преобразует в ток. Цепь преобразование включает в себя сумму сопротивлений Rма и Rд, где Rма сопротивление измерительной головки, а Rд - добавочное сопротивление.
Rд и отвечает за максимальный предел измерений. Из этих двух сопротивлений и состоит сопротивление самого вольтметра - Rв.
Предел измерения максимального напряжения Uизм.макс. зависит от тока полного отклонения стрелки Iизм.макс. и внутреннего сопротивления измерительной головки Rма.
Вернёмся к нашему вольтметру и посмотрим, что там. Две катушки которые находятся внутри корпуса это и есть добавочные сопротивления. Каждая из них имеет сопротивление 16700 Ом. В последствии, нам потребуется эти две катушки отсоединить, а взамен установить построечный резистор. Им мы установим требуемый нам предел измерения.
Рассмотрим вторую схему, которая нам позволит адаптировать вольтметр для нашего стенда. Как ранее уже было замечено, вольтметр М309 предназначен для работы в цепях с постоянным током. В нашем случае ток будет переменный. Для того чтобы вольтметр мог измерять переменное напряжение есть несколько вариантов схем. Первая с однополупериодным выпрямителем, и вторая с двухполупериодным выпрямителем. Для вольтметров с выпрямителем расчёт Rд будет немного отличаться. Рассчитав добавочный резистор по основной формуле (её см. выше) мы полученное значение Rд должны разделитель на коэффициент. Для однополупериодной схемы этот коэффициент составляет от 2,5 до 3-х единиц, а для двухполупериодной схемы коэффициент составляет от 1,25 до 1,5.
Отсоединив добавочные сопротивления, мы к входным клеммам крепим диодный мост (двухполупериодная схема). Далее к одной из ножек диодного моста припаиваем построечный резистор. От резистора припаиваем провод к измерительной головки. От второй клеммы измерительной головки припаиваем провод к оставшейся клемме диодного моста.
Коммутация электрической схемы внутри вольтметра завершена.
Для проведения испытаний воспользуемся лабораторные автотрансформатором. Им совместно с мультиметром проверим работоспособность модернизированного вольтметра. Как и прогнозировалось, всё работает. Собираем конструкцию дальше. Устанавливаем шкалу обратно и прикручиваем два провода для коммутации клемм на корпусе с вольтметром.
Устанавливаем вольтметр в корпус и подключаем его к корпусным клеммам.
Закрутив заднюю крышку корпуса, мы ещё до изготовления шкалы протестируем вольтметр включив его в схему стенда. Прибор работает.
Переходим к изготовлению новой шкалы. Как уже ранее заявляли она будет иметь упрощённый вид. Её создадим в программе MS Visio и распечатаем на бумаге на принтере.
Наклеиваем шкалу на пластину и собираем прибор.
В следующей статье рассмотрим, что нам потребуется сделать, чтобы можно было включить амперметр М367 в схему нашего стенда.